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Abstract. The basic Landau model for uniaxial systems of class II is non-integrable, and allows
for various stable and metastable periodic configurations, beside that representing the uniform (or
dimerized) ordering. In the present paper we complete the analysis of this model by performing
the second-order variational procedure, and formulating the combined Floquet–Bloch approach to
the ensuing non-standard linear eigenvalue problem. This approach enables an analytic derivation
of some general conclusions on the stability of particular states, and on the nature of accompanied
collective excitations. Furthermore, we calculate numerically the spectra of collective modes for all
states participating in the phase diagram, and analyse critical properties of Goldstone modes at all
second- and first-order transitions between disordered, uniform and periodic states. In particular,
it is shown that the Goldstone mode softens as the underlying soliton lattice becomes more and
more dilute.

1. Introduction

One of the most useful insights into the properties of stable and metastable ordered states
in many-body systems follows from the investigations of accompanying collective modes,
excitations with a coherent participation of a (semi)macroscopic number of particles. Attention
is usually focused on the lowest branch in the spectrum. If it is of Goldstone type, i.e. gapless
(e.g. acoustic) in the long-wavelength limit (k → 0), there is a continuous degeneracy in the
characterization of the ordered state, associated with the breaking of symmetry of the high-
temperature thermodynamic phase. Without continuity in the degeneracy one has instead a
finite gap at k = 0.

Obvious extrinsic causes for the gap in the Goldstone mode are impurities, defects in the
crystal structure, etc. Another cause for the gap is the presence of long-range interactions
[1]. We do not consider either of these mechanisms here, but recall that, as is well known in
charge density wave materials [2, 3], they may play a decisive role in the collective dynamics
of the ordered state. Instead, we concentrate on the systems in which the above distinction
regarding the degeneracy of ordered state(s) has its origin in short-range interactions. There
are numerous materials that show one or more types of uniaxially modulated orderings with
periodicities which may be commensurate or incommensurate with respect to the underlying
crystal lattice§.

§ For reviews see [4, 5].
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Let us invoke some simple widely accepted conclusions, accumulated through intense
theoretical and experimental investigations on these incommensurate–commensurate (IC)
systems over the last few decades. In an ideal case of sinusoidal modulation the spectrum
of collective excitations contains two types of modes, phasons and amplitudons, representing
linearized fluctuations of phase and amplitude of the order parameter, respectively. While the
amplitudon mode has a finite gap below the critical temperature, the phason mode is acoustic if
the free energy of the corresponding state does not depend on the relative phase of the ordered
modulation and crystal lattice. In other words, one has continuous degeneracy with respect to
this relative phase. It is strictly fulfilled only if the modulation is incommensurate with respect
to the periodicity of the crystal lattice.

For commensurate modulations the free energy depends on the relative phase, as is
easily seen already from the standard Landau expansions in which the lattice discreteness
is taken into account by keeping a leading Umklapp contribution. Within this standard
and frequently explored model [6, 7], which leads to a simple variational equation of sine–
Gordon type, the phason mode acquires a gap which is finite only for strict commensurate
ordering, and diminishes rapidly (exponentially) as the order of commensurability increases.
For other modulations, which may have the form of dilute soliton lattices, the Goldstone mode
remains gapless, although among these modulations there are solutions with commensurate
periodicities close to the exempted leading commensurability. In other words, within
this model one does not distinguish between ‘secondary’ commensurate orderings and
incommensurate orderings. This is the consequence of a crude simplification made by
retaining only one Umklapp term in the free energy. Recent analysis shows that already
after taking into account two leading Umklapp terms the phase diagram becomes qualitatively
different [8, 9]. It contains a finite number of commensurate states, and shows a harmless
staircase, i.e. a series of first-order transitions between neighbouring states. The Goldstone
mode is then expected to have a finite gap for each state participating in the phase
diagram.

The Landau models for the orderings with spatial modulations are generally justified
providing the interactions responsible for their stabilization are weak enough, so that the
variations of the order parameter (defined with respect to the appropriately chosen star of
wavevectors) are slow at the scale of the lattice constant. Two crucial simplifications are then
allowed, namely the gradient expansion and the perturbative treatment of lattice discreteness
through the truncation of the sum of Umklapp contributions.

In the opposite regime of strong couplings the above spatial continuation is not allowed,
and the lattice discreteness leads to qualitatively different properties of phase diagrams and
related spectra of excitations, established by numerous analytical, and particularly numerical,
studies of spin (e.g. Ising) [10, 11], displacive (e.g. Frenkel–Kontorova) [12] and electron–
phonon (e.g. Holstein) [13, 14] discrete models. Characteristically for such models, either
a finite, sometimes large, number of commensurate modulations in the case of a harmless
staircase, or an infinite number of them in the case of a complete devil’s staircase, can
participate in the phase diagram. All commensurate states then have the lowest branches
of collective excitations with finite gaps in the limit k → 0. We repeat that, while none
of these possibilities can be reproduced by the Landau model with one Umklapp term,
the former harmless staircases with a finite number of commensurate states are realized
already within extended Landau models with only two Umklapp terms taken into account
[8, 9].

The analysis of Frenkel–Kontorova and Holstein models also established a new type of
instability that involves incommensurate modulations, the so-called transition by breaking
of analyticity [15]. Namely, by increasing the coupling constant [16], or by decreasing
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temperature [17, 18], the smooth envelope of an incommensurate periodic modulation becomes
non-analytic. The free energy then depends non-analytically on the relative phase of the
modulation and the underlying lattice. Consequently, a finite gap opens in the Goldstone
branch of collective excitations even for incommensurate modulations.

Already from the beginning of investigations on discrete models it was realized that the
above complex features in phase diagrams and spectra of collective excitations have their
origin in the non-integrability of these models, i.e. in the non-trivial chaotic structures of
corresponding phase spaces. In this respect it is important to emphasize that, either in their
basic form or after the inclusion of further terms, Landau free-energy expansions are as a rule
examples of non-integrable functionals. For example, while the sine–Gordon model with one
Umklapp term, as a basic model for class I IC systems, is integrable, the inclusion of another
Umklapp term already brings in non-integrability [8, 9].

The situation is even more intriguing for class II, i.e. for IC materials with modulations
having a period close or equal to either the original or the dimerized unit cell of the crystal lattice.
There are numerical [19] and analytical [20] indications that already the minimal [21, 22], as
well as slightly extended [23], models for this class are not integrable. The consequences of this
non-integrability on the phase diagram are discussed in detail in [20]. In particular, it is shown
that, in addition to simple disordered, commensurate (i.e. (anti)ferro) and (almost) sinusoidal
incommensurate states, included in previous analyses [22–24], the phase diagram also contains
an enumerable family of metastable solutions with periodic alternations of commensurate and
incommensurate sinusoidal domains.

In this paper we calculate the spectrum of collective modes for stable and metastable
states in systems of class II. The corresponding Landau model is particularly convenient for the
discussion of questions raised in the introduction, since it is non-integrable, and, in addition, the
accompanying phase diagram comprises both commensurate and incommensurate (meta)stable
states. Our main aim is to investigate to what extent the collective modes are influenced by the
non-integrability of the free energy functional (which is continuous here). Furthermore, by
analysing Goldstone modes for the modulated states of the model under consideration [22, 23]
we also resolve some controversies present in the literature [25–29] on its applicability in
the description of incommensurate phases in systems of class II. The equivalent analysis
for class I, i.e. for the Landau model with two Umklapp terms, will be presented elsewhere
[30].

The plan of the paper is as follows. The free energy functional for class II is
introduced in section 2. In section 3 we perform the variational procedure up to the
second order, taking care about some specific questions related to the thermodynamic
minimization [31]. The linear eigenvalue problem associated with the second-order variational
procedure is discussed in section 4. Here we encounter a generalized Hill problem, since
the system includes four coupled first-order equations (in contrast to the standard cases
with two equations), and furthermore, since we are looking for the collective modes of
highly multiharmonic periodic states. We therefore do not follow a standard method,
appropriate for simple sinusoidal incommensurate orderings, but develop for the first time
a general formalism, also applicable to other types of Landau models. This formalism
enables the determination of Floquet exponents, and of the corresponding Bloch basis of
eigenfunctions which we consider in section 5. The numerical results for the collective
modes of all (meta)stable states appearing in the phase diagram are presented in section 6.
Concluding remarks along the lines specified in the previous paragraph are given in
section 7.
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2. Model

The free energy functional for the uniaxial incommensurate systems of class II is given by

f̃ [ũ] = 1

2L̃

∫ L̃

−L̃

[
d

(
d2ũ

dz̃2

)2

+ c

(
dũ

dz̃

)2

+ aũ2 +
1

2
bũ4

]
dz̃ (1)

where ũ represents the real order parameter and L̃ is the length of the system. This functional
is the simplest (minimal) Landau expansion for the systems with minima of free energy density
in the reciprocal space close to the centre of the Brillouin zone, or to the part of its border
perpendicular to the uniaxial direction. Then c < 0, and one has to add a highly non-trivial
term with the second derivative of ũ (and presumably positive coefficient d) in order to ensure
the boundness of the Landau expansion in the reciprocal space. The rest of the expansion (1) is
standard, with b > 0, and a becoming negative below the critical temperature of the transition
from the disordered to the uniform (ferro) or dimerized (antiferro) phase. We limit the further
analysis to the most interesting regime characterized by c < 0. It includes the incommensurate
ordering and the transition to the commensurate ordering (but does not include the transition
from the disordered to the commensurate state which takes place for c > 0) [21, 22]. In this
regime the useful dimensionless quantities are

z =
√

− c

d
z̃ L =

√
− c

d
L̃ u(z) = −

√
bd

c
ũ(z̃) f [u] = bd2

c4
f̃ [ũ]. (2)

Model (1) can now be represented as the one-parameter problem,

f [u] = 1

2L

∫ L

−L

[(
d2u

dz2

)2

−
(

du

dz

)2

+ λ u2 + 1
2u4

]
dz (3)

with λ ≡ ad/c2. The parametrization of the phase diagram in the regime c < 0 is thus very
simple, since all relationships between different (meta)stable states (such as phase transitions,
ranges of coexistence of two or more states, etc) can be presented in the one-dimensional
λ-space. The knowledge of the actual dependence of this parameter, as well as of the scales
which enter into the reduced quantities (2), on the original physical parameters, in particular
on temperature, goes together with the specification of a microscopic background behind the
phenomenological free energy (1). This is a necessary step in any comparison of the phase
diagram for the model (3) with the experimental data for a given material.

In the previous works [19, 20] on the functional (3) we have determined
thermodynamically stable states, i.e. its local minima, without taking into consideration
statistical fluctuations outside these minima. This mean-field-type approximation is
inappropriate for (quasi) one-dimensional systems. It is, however, usually sufficient for three-
dimensional uniaxial systems with strong enough couplings in the perpendicular directions,
on which we concentrate here.

The thermodynamic extremalization of functional (3) consists of the standard variational
procedure that is equivalent to the classical mechanical one and leads to the corresponding
Euler–Lagrange (EL) equation

d4u

dz4
+

d2u

dz2
+ λu + u3 = 0 (4)

and of the extremalization that involves boundary conditions or some equivalent set of
parameters. The general procedure that carefully takes into account the latter aspect is proposed
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Figure 1. The phase diagram for the model (3). The inset shows the whole range of (meta)stability
of the almost sinusoidal configuration s2 and indicates the portion of the phase diagram in which
other metastable non-sinusoidal configurations coexist. This portion is shown in the larger part of
the figure.

in [31]. The most interesting result of this approach is obtained for the functional with the
kernel that is not explicitly z dependent. Then the relation

F = −H (5)

holds for each thermodynamic extremum u0(z). Here F is the corresponding averaged free
energy, and H is the integral constant of the problem (4) which corresponds to the Hamiltonian
in classical mechanics.

Early considerations of the model (1) led to the suggestion that the mean-field phase
diagram [21, 22, 24, 32, 33] contains only disordered [ud(z) = 0], commensurate [uc(z) =
±√−λ] and (almost) sinusoidal

[
us(z) ≈ 2/

√
3
(√

1
4 − λ

)
sin (z/

√
2)

]
incommensurate

orderings. The commensurate state is thermodynamically stable for λ < − 1
8 (and for a < 0 in

the range c > 0). The incommensurate state is stable in the range −2 < λ < λid = 1
4 , while the

first-order phase transition between the commensurate and the incommensurate states occurs
at λic = −1.112. The more precise values, obtained after taking into account corrections from
higher harmonics in the sinusoidal ordering [20], are −1.835 < λ < λid and λic = −1.177.
Also, the wavenumber of this ordering, q, deviates slightly from 1/

√
2 (i.e. from

√−c/(2d)
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in the original parameters of equation (1)) as one approaches the left-hand edge of instability,
λ → −1.835.

While by the above solutions of the EL equation (4) one exhausts all absolute minima of
the free energy (1), the more involved numerical analysis [19, 20] showed the existence of an
enumerable series of periodic solutions which are metastable in finite ranges of the parameter λ.
The corresponding phase diagram is shown in figure 1 in which we ascribe to various solutions
symbolic words introduced in [20]. By their physical content the metastable solutions from
figure 1 represent periodic trains of successive sinusoidal and uniform segments (see figure 1
in [20]), and, as domain patterns, complete in a natural way, as an inherent outcome of the
non-integrable model (1), the phase diagram in the range of coexistence of two corresponding
basic types of orderings.

3. Second-order variational procedure

The question on which we concentrate now is the thermodynamic stability of a given state
u(z) which is a solution of the EL equation (4) and fulfils the additional conditions of [31].
To this end we have to go beyond the linear terms in the extremalization procedure. Let us
therefore first extend the standard variational procedure to second order. Later on we shall
briefly consider the conditions which follow from the minimization of boundary conditions.

Let η(z) be the infinitesimal variation with respect to u(z), obeying the usual conditions
at the boundaries z = 0 and L,

η(z = 0) = η(z = L) = η′(z = 0) = η′(z = L) = 0. (6)

After performing standard partial integrations,

1

L

∫ L

0
(η′)2 dz = 1

L
η′η


L

0

− 1

L

∫ L

0
η′′η dz

1

L

∫ L

0
(η′′)2 dz = 1

L
η′′η′


L

0

− 1

L
η′′′η


L

0

+
1

L

∫ L

0
ηIV η dz

(7)

the quadratic contribution to the corresponding variation of the free energy functional (3) can
be expressed in the form

δ2f ≡ f [u + η] − f [u] = 1

L

∫ L

0
dz η Dη (8)

with

D ≡ d4

dz4
+

d2

dz2
+ λ + 3u2. (9)

The linear differential operator (9) defines the eigenvalue problem

Dη� ≡ η′′′′
� (z) + η′′

�(z) +
[
λ + 3u2(z)

]
η�(z) = �η�(z) (10)

with the boundary conditions for η(z) specified by equation (6). The necessary condition for
the thermodynamic stability of the solution u(z) is given by the requirement that the spectrum
� should be non-negative for all normalizable solutions η�(z) of the problem (9) and (6).

Since the above procedure strictly respects the boundary conditions (6), it is entirely
equivalent to that usually used in classical mechanics. As a consequence, the obtained condition
for the stability of a given solution u(z) holds for any value of the sample length L. However,
neither the extremal solution u(z) of the EL equation (4), nor the corresponding conditions of
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thermodynamic stability, should be sensitive to the conditions imposed on the sample surfaces
in the physically relevant thermodynamic limit L → ∞. Therefore, the stability condition
can be generalized in this limit. In particular, we may ignore the boundary conditions (6),
and perform the variational procedure for any infinitesimal variation η(z), noting, for later
purposes, that the requirement of infinitesimality excludes variations η(z) which would scale
as |z|β with β > 0.

Performing the same steps as before, but now with neglected surface terms in equations (7)
(which scale as 1/L), we come again to the linear eigenvalue problem (10), but without a
specification on boundary conditions. This means that any complete set of eigenfunctions
η�(z) with the eigenvalues � (which are themselves characterized solely by the linear
differential equation (10)) can be used in the representation of a given variation η(z), and
in the corresponding diagonal representation of the free energy (8). The condition � � 0 thus
guarantees the thermodynamic stability of the solution u(z) with respect to any infinitesimal
variation, provided the system has the well defined thermodynamic limit as specified above.
We note that by this relaxation of boundary conditions (6) we extend the standard ‘classical
mechanical’ second-order variational procedure by including a part of, but still not all, the
‘thermodynamic’ variations. The discussion of this question in the appendix suggests that
the criterion of thermodynamical stability is probably entirely covered by the eigenvalue
problem (10).

The concise definition of the thermodynamical stability, i.e. of the stability of any
(absolutely stable or metastable) local minimum of thermodynamic functional with respect
to small fluctuations, is thus:

• a given solution of the EL equation (4) is thermodynamically stable if and only if all
solutions of equation (10) for any � < 0 are non-normalizable.

For later purposes it is appropriate to also introduce the concept of orbital stability, relevant
for the behaviour of particular solutions in the phase space:

• a given solution u(z) of the EL equation (4) is orbitally stable if and only if all solutions
of equation (10) for � = 0 are normalizable.

In the next section the above definitions will be used in the study of stability of
homogeneous and periodic configurations u(z). The crucial assumption in this respect is
that the solutions of equation (10) depend smoothly on both parameters λ and �.

Before embarking on the calculation of the spectrum of the eigenvalue problem (10), we
invoke its general property which follows from the fact that the density of the free energy
functional (3) does not depend explicitly on the spatial coordinate z. Then there exists a
normalizable solution of equation (10) with � = 0, namely η0(z) ∝ u′(z). This is the
Goldstone mode that follows from the translational invariance of the free energy functional (3),
by which u(z + z0) with arbitrary z0 is a solution of the EL equation (4) if u(z) is its solution.
We note that equation (10) then has, together with the above Goldstone mode, another solution
of the form η1(z) = w(z) + z u′(z), where w(z) is some periodic function of the same period
as that of the Goldstone mode. Although η1(z) is non-normalizable, i.e. its norm grows as
a power of L, we consider this non-normalizability as marginal. The power-law growth of
a solution of equation (10) is much easier to control than the possibly exponential growth of
the remaining solutions, if there are any. For special values of the parameter λ figuring in
equation (10) with � = 0 the only normalizable solution is the Goldstone mode u′(z), while
other solutions have a power-law growth in z, znu′(z) with n � 3. These special values of λ

denote the edges of thermodynamical metastability of the corresponding configuration u(z).
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4. Floquet theory

The analysis of the eigenvalue problem (10) with periodic functions u(z) is based on general
Floquet and Bloch theorems for linear differential equations with periodic coefficients. It will
be performed in two stages, covered by this and the next section. The aim of this section,
based on Floquet’s approach, is to answer the question of whether there exists a normalizable
solution η�(z) for a given value of �. In the second stage we calculate the set of values � for
which normalizable solutions exist, i.e. the spectrum of collective modes, by using the Bloch
wavenumber representation.

We begin by showing that the set of values of � for which the corresponding normalizable
solutions η�(z) may exist is bounded from below. To this end let us rewrite equation (10) in
the form

D̃2η�(z) + 3 u(z)2η�(z) = (
� + 1

4 − λ
)
η�(z) D̃ ≡ d2

dz2
+

1

2
(11)

and introduce the norm of the function η�(z),

‖η�‖2 ≡ 〈
η∗

�η�

〉 = 1

L

∫ L

0
η�(z)∗η�(z) dz. (12)

After multiplying equation (11) by η∗
�(z) and integrating with respect to z we obtain

‖D̃η�(z)‖2 + 3‖u(z)η�(z)‖2 = (
� + 1

4 − λ
) ‖η�(z)‖2. (13)

Here it is taken into account that the operator D̃ is Hermitian and the function u(z) is real.
Since the left-hand side of equation (13) is strictly positive, we conclude that

� � �min = λ − 1
4 (14)

for each � for which the norm (12) of the function η�(z) exists. In particular, this means
that it is sufficient to reduce a (numerical) analysis of the thermodynamic stability of a given
configuration u(z) to the search for the normalizable eigenfunctions η�(z) in the finite interval
of �, �min � � < 0.

Before considering equation (10) with the general periodic function u(z), let us establish
the criterion for the thermodynamic stability of the particular homogeneous (ferro or antiferro)
solution uc(z) = ±√−λ of the EL equation (4). Then equation (10) reduces to the linear
differential equation with constant coefficients, so that the normalizable eigenfunctions must
have the formη(z) ∝ eikz with real values of the wavenumber k. The corresponding eigenvalues
� are given by

� = k4 − k2 − 2λ λ < 0. (15)

It follows that the homogeneous configuration uc(z) = ±√−λ is stable, i.e. that � > 0 for
any k, provided that λ < − 1

8 . Note that the latter inequality is just the condition of orbital
instability of the homogeneous solution. Namely, the linearization of the EL equation with
respect to this solution leads to the linear equation

θ ′′′′ + θ ′′ − 2λθ = 0 (16)

which has normalizable solutions θ(z) only for λ > − 1
8 . Thus, we see that in this simple

case the thermodynamic stability excludes the orbital stability, and vice versa, and that two
stabilities ‘meet’ each other in one point, λ = − 1

8 .
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4.1. General Floquet procedure

In order to apply the well known Floquet procedure [34] to equation (10) with a general periodic
function u(z), we rewrite this equation in the matrix form

dΘ(z)

dz
= A(z; λ, �)Θ(z) (17)

where Θ(z) ≡ [η(z), η′(z), η′′(z), η′′′(z)]T , and the matrix A(z; λ, �) is given by

A(z) =




0 1 0 0

0 0 1 0

0 0 0 1

� − λ − 3 u(z)2 0 −1 0


. (18)

The system of linear equations (17) has four linearly independent solutions, Θi (z), i =
1, . . . , 4. They form the fundamental matrix

F (z) = [Θ1(z),Θ2(z),Θ3(z),Θ4(z)] (19)

which is obviously the solution of the equation

dF (z)

dz
= A(z; λ, �)F (z). (20)

Without reducing generality we can always choose initial conditions at z = 0 such that
F (0) = I, where I is the identity matrix.

Floquet’s theorem states that whenever the matrix A(z; λ, �) is a periodic function of the
variable z with period P , the fundamental matrix has the form

F (z) = G(z) eΣz (21)

where G(z) is a matrix which varies periodically with z, G(z+P) = G(z), and Σ is a constant
matrix. Due to the periodicity of the matrix G(x) and the initial condition G(0) = I, the
matrix Σ can be expressed in the form

Σ = 1

P
ln F (P ). (22)

The matrix F (P ) is called the monodromy matrix. The eigenvalues of Σ, σi are Floquet
exponents and the eigenvalues of the monodromy matrix F (P ), ρi , are Floquet multipliers. In
other words, Floquet’s theorem states that for each Floquet multiplier ρi there exists a solution
Θi (z) of equation (17) with the property

Θi (z + P) = ρΘi (z). (23)

Floquet multipliersρi are, in general, complex numbers. For a normalizable solutionΘi (z)

the Floquet multiplier ρi lies on the unit circle in the complex ρ-plane, and the corresponding
Floquet exponent σi is imaginary.
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4.2. Poincaré–Lyapunov theorem

The problem (17) has an additional important property. After the linear transformation
Z(z) ≡ [Z1(z), Z2(z), Z3(z), Z4(z)]T = TΘ(z), defined by

Z1 = η(z) Z2 = η′′(z) Z3 = 2(η′(z) + η′′′(z)) Z4 = 2η′(z) (24)

i.e. by

T (z) =




1 0 0 0

0 0 1 0

0 2 0 2

0 2 0 0


 (25)

equation (17) is transformed into the equation

dZ(z)

dz
= JH(z; λ, �)Z(z) (26)

with

H(z) =




−2(λ − � + 3 v0(z)
2) 0 0 0

0 2 0 0

0 0 0 − 1
2

0 0 − 1
2

1
2


 J =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


.

(27)

The problem (26) has a Hamiltonian form, characterized by the Hermitian matrix H and the
symplectic matrix J (i.e. J is antisymmetric and has the property J2 = −I). The Poincaré–
Lyapunov (PL) theorem [35] for such problems states that the corresponding fundamental
matrix, Φ(z), satisfies the relation

ΦT (z)JΦ(z) = ΦT (0)JΦ(0). (28)

In other words, ΦT (z)JΦ(z) is the ‘integral of motion’ for the Hamiltonian problem (26). This
theorem can be easily checked by differentiating relation (28) with respect to z, and taking into
account equation (26). Since Φ(z) = TF (z), and the matrix T T JT ≡ J1 is also symplectic,
it follows that

F T (z)J1F (z) = F T (0)J1F (0) = J1 (29)

i.e. the PL theorem holds for our original fundamental matrix F (z) as well.
From relation (29) it follows that the matrices F T (z) and F −1(z) are similar (F T (z) =

J1F
−1(z)J−1

1 ). Thus, if ρ1 ≡ ρ is the Floquet multiplier of F (P ), then ρ−1 is also its Floquet
multiplier. Furthermore, since in our example the matrix F (P ) is real, it follows that ρ∗ and
ρ∗−1 are Floquet multipliers as well. These simple relations link four Floquet multipliers of the
problem (17) for any periodic solution of the EL equation (4) and for any value of parameter λ.
The corresponding three possible types of distributions of Floquet multipliers in the complex
ρ-plane are shown in figure 2. Floquet multipliers are either complex (a) or real. In the latter
case two pairs generally have different values and may be of the same (b) or opposite (c) signs.
Figure 2 does not include the situations with existing collective modes, i.e. when one or two
pairs of solutions are normalizable, and the corresponding Floquet multipliers are on the unit
circle.
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Figure 2. Possible distributions of Floquet multipliers in the complex
plane. The distributions (a), (b) and (c) correspond to the non-
normalizable solutions of equation (17). None of these distributions
can smoothly transform to the other two without intersecting the unit
circle.

Four Floquet multipliers of the problem (17) can be represented as roots of a polynomial
function of fourth order. Since, due to the PL theorem, ρ, ρ−1, ρ∗ and ρ∗−1 are all roots of
such a function, its general form is

P4(ρ) = ρ4 + a(λ, �)
(
ρ3 + ρ

)
+ b(λ, �)ρ2 + 1 (30)

where a(λ, �) and b(λ, �) are, for a given periodic function u(z), some smooth real functions
of parameters λ and � from the matrix (18).

4.3. Scenarios of thermodynamic (in)stabilities

Having recapitulated the Floquet theory for the Hamiltonian linear problem (17), we address
the problem of thermodynamical stability for a given periodic configuration u(z). We start by
noting that equations (17), (18) and (30) enable some general conclusions about the dependence
of the positions of Floquet multipliers in the complex plane on the parameters λ and �. At
first, since ρ = 0 cannot be the root of P4(ρ), it follows that by changing λ and � continuously
one can come from the distributions (a) or (b) to the distribution (c) in figure 2 only by passing
through the unit circle. Next, it is easy to determine the positions of Floquet multipliers in the
limits � → −∞ and � → ∞, since then we may neglect λ and u2(z) with respect to � in
the polynomial matrix element of the matrix A (18) (still keeping in mind that u(z) defines
the period P which enters into the definition (22)).

In the former limit � → −∞ the Floquet multipliers are given by

ρn = eknP kn = |�|1/4ei(2n+1)π/4 n = 0, 1, 2, 3 (31)
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Figure 3. The distribution of Floquet multipliers corresponding to
the existence of just one complex normalizable solution (a collective
mode) of equation (17).

Figure 4. The completely degenerate Goldstone mode (a) which originates by merging two real
multipliers shown in (b). The situation shown in (c) corresponds to approaching the instability for
some negative �, which then evolves by moving two multipliers (corresponding to a non-Goldstone
mode) along the unit circle.

i.e. the distribution from figure 2(a) is realized. Note that for � < �min this distribution cannot
pass to that from figure 2(c), since in this range of values of � the unit circle cannot be crossed
because the problem (17) does not have normalizable solutions.

In the limit � → ∞ the Floquet multipliers are given by

ρ1 = ρ−1
2 = e�1/4P ρ3 = ρ−1

4 = ei�1/4P . (32)

As is seen in figure 3, one then has one pair of normalizable and one pair of non-normalizable
solutions.
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From the other side, at � = 0 one particular Floquet multiplier has the value ρ = 1, and
corresponds to the already mentioned Goldstone mode. It has to be at least doubly degenerate,
since otherwise the remaining three multipliers could not have symmetric positions required by
the PL theorem. Possible distributions of Floquet multipliers for � = 0 are shown in figure 4.
Aside from the possibility that the degeneracy of the Goldstone mode is complete and all four
multipliers are at ρ = 1 (a), one may have the remaining two multipliers either on the real axis
(b), (c), or on the unit circle (d).

Taking into account the above conclusions, we are now able to list possible scenarios of
thermodynamic (in)stabilities for the periodic solutions of equations (4) and (5).

(a) The solution u(z) is unstable for a given value of λ if by increasing � from �min = λ− 1
4

the Floquet multipliers from the distribution (a) or (b) of figure 2 move in such a way as
to come to the unit circle for some value of � in the interval (λ − 1

4 , 0).
(b) If the solution u(z) is thermodynamically stable, the Floquet multipliers for λ− 1

4 < � < 0
are defined either by one complex number not lying on the unit circle (figure 2(a)), or
by two real numbers of the same sign (r1, r2) and their reciprocals (figure 2(b)). The
latter case has to be realized as � → 0 from below, since only distributions (b) and (c)
from figure 4 represent the Goldstone mode for a thermodynamically stable configuration.
Thus, at some negative value of � the distribution from figure 2(a) has to reduce to the
doubly degenerate Floquet multiplier at the real axis (r1 = r2), which then evolves into
the distribution from figure 2(b).

(c) For special value(s) of the control parameter (λ = λc) the thermodynamic instability of
u(z) proceeds in a particular way, realized when all four complex Floquet multipliers
approach together the point ρ0 = 1 as � tends to zero from below. The Goldstone mode
is then completely degenerate (figure 4(a)). Put in another way, such an instability occurs
when the points r and r−1 in figure 4(b) tend towards ρ0 = 1 as λ → λc. Note that
the distribution of Floquet multipliers from figure 4(c) means that the instability, i.e. the
crossing of the Floquet multipliers with the unit circle, takes place at some negative value
of �. Also, the distribution from figure 4(d) signifies that the remaining non-Goldstone
mode is unstable in a finite interval of values of �, starting at some negative value of �.

5. Bloch theory

In order to determine normalizable solutions of equation (17) with � � 0, i.e. the collective
modes for given periodic configuration u(z) with the period P = 2π/Q, we profit from the
freedom in choosing boundary conditions for the solutions η(z), and specify periodic (Born–
von Karman) ones. By this we chose the Bloch representation,

ηk(z) = eikz+k(z) +k

(
z +

2π

Q

)
= +k(z) (33)

where k is the Bloch wavenumber limited to the class I Brillouin zone (−Q/2 � k � Q/2).
The differential equation for the periodic function +k(z) reads

d4+k(z)

dz4
+ 4ik

d3+k(z)

dz3
+ (1 − 6k2)

d2+k(z)

dz2
+ 2ik(1 − 2k2)

d+k(z)

dz

+
[
k4 − k2 + λ + 3u(z)2

]
+k(z) = �(k)+k(z) (34)

and the normalizability condition is

Q

2π

∫ 2π/Q

0
+∗

k (z)+k(z) dz = 1. (35)
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The dependence �(k), i.e. the spectrum of eigenvalue problem (10), follows from
equations (34) and (35). Since k is quasi-continuous in the limit L → ∞, this spectrum
is, for a stable configuration u(z), composed of non-negative bands. The corresponding Bloch
functions ηn,k(z), where n enumerates bands, represent a complete orthonormal set of functions
for the problem (10).

From expressions (23) and (33) it follows that the Floquet multiplier for the Bloch function
ηk(z) is given by ρ = eikP . The polynomial function (30) then has the form

P4(ρ) = (
ρ − eikP

) (
ρ − e−ikP

) [
ρ2 + c2(λ, �)ρ + 1

]
(36)

where c2(λ, �) is some coefficient. Comparing two representations for P4(ρ) we conclude
that the coefficients from the expressions (30) and (36) are linked by the relations

a(λ, �) = c2(λ, �) − 2 cos(kP ) b(λ, �) = 2 − 2c2(λ, �) cos(kP ) (37)

i.e. that the eigenvalue � depends on the wavenumber k only through the function cos(kP ).
This means, in particular, that for each band �(k) we have �(−k) = �(k). This is consistent
with the symmetry of equation (34). Furthermore, �(k + 2π

P
) = �(k), in accordance with the

reduction of wavenumbers in (33) to the class I Brillouin zone.
The representation (33) is particularly convenient for the analytical discussion of the long-

wavelength limit k → 0 for the Goldstone mode for which �(k = 0) = 0 and +k=0(z) = u′(z).
To this end we insert the Taylor expansions for small k,

+k(z) = u′(z) + k+1(z) + k2+2(z) + · · · �(k) = k2�2 + k4�4 + · · · (38)

into equation (34). The requirement that the coefficients in front of leading powers, k and k2,
vanish then leads to the equations(D̃2 + λ − 1

4 + 3u2
)
+1 = −2i

(
2u′′′′ + u′′) (39)

and (D̃2 + λ − 1
4 + 3u2

)
+2 = (�2 + 1)u′ + 6u′′′ − 2i(2+ ′′′

1 + + ′
1) (40)

with the operator D̃ given by equation (11). After multiplying equation (40) by v′, integrating
with respect to z, using the fact that u′ is the Goldstone mode, and inserting 2u′′′′ + u′′ from
equation (39), we obtain the expression for the coefficient �2,

�2 = −1 + 6

〈
u′′2〉〈
u′2〉 −

〈
+∗

1

(D̃2 + λ − 1
4 + 3u2

)
+1

〉
〈
u′2〉 (41)

where 〈· · ·〉 denotes spatial integration, as in equation (12). However, the general
thermodynamic condition (5) for the functional (1) reads [31]〈

u′′2〉〈
u′2〉 = 1

2 (42)

so that equation (41) can be written in a more transparent way,

�2 = 2 − F2 [u(z)]. (43)

Here we introduce the functional

F2[u(z)] =
〈
+∗

1

(D̃2 + λ − 1
4 + 3u2

)
+1

〉
〈
u′2〉 . (44)
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Since the operator figuring in this equation just defines the eigenvalue problem (10) and (11),
it is clear that the functional F2 [u(z)] is positive definite for any thermodynamically stable
configuration u(z). This has two consequences.

Firstly, the common upper limit of the velocity of the Goldstone mode, vG = √
�2, for

all thermodynamically stable periodic states is vG,M = √
2. The velocity vG for a given

(meta) stable state has the maximum value vG,max � vG,M when the functional (44) attains its
minimum. Like the functional (3), the functional F2[u(z)] depends only on the parameter λ.
Thus, taking a given solution u(z), we can find the function +1 by solving the inhomogeneous
linear differential equation (39), and then determine, by calculating F2[u(z)], the velocity vG

as a function of λ. In other words, we have a direct method of calculating the velocity of the
Goldstone mode, not related to the above Floquet–Bloch procedure (but derived from it). It
can be used as an independent check of numerical results for the spectrum �(k) which follow
from equation (34).

Secondly, the functional (44) attains its minimal value (F2 = 0) if and only if the function
+1(z) vanishes. As is seen from equation (39), this is possible only when the solution u(z)

satisfies the equation

2u′′′′ + u′′ = 0 (45)

i.e. when u(z) ∝ sin (z/
√

2). The only solution from the phase diagram in figure 1 with
this property is the almost sinusoidal incommensurate state, denoted by s2. Since in the
limit λ → λid = 1

4 it reduces strictly to the above simple sinusoidal dependence on z (with
the amplitude tending to zero), we conclude that just at the second-order phase transition
from the incommensurate to the disordered state the velocity of the Goldstone mode of the
incommensurate state attains the maximum value vG,M = √

2. We note that other periodic
(and metastable) states u(z) from figure 1 cannot even approximately satisfy equation (45).
On the other hand, due to the deviations from the sinusoidal form of a given solution, the
functional (44) can attain the value F2 = 2, in which case the velocity of the Goldstone mode
vanishes. As will be seen from the numerical results in the next section, this is indeed the
case for all periodic solutions (including the almost-sinusoidal configuration s2) at the edges
of their local thermodynamic stabilities.

Let us conclude this general discussion with a remark on the class of periodic solutions
u(z) which in addition have the property u(z + P/2) = −u(z). Since only u2(z), which then
has the period P/2 (and not P ), enters into the problem (17), the corresponding spectrum �(k)

and the Floquet multipliers can be calculated with respect to the former period. The class I
Brillouin zone is then doubled (−Q � k � Q), and the number of branches of collective
modes is halved. In particular, with this choice the value of the Floquet multiplier for the
Goldstone mode u′(z), defined by equation (23), is −1 and not 1. The approaching of � = 0
from below for the stable solution u(z) then proceeds as in point (b) of subsection 4.1, but
with one pair of Floquet multipliers tending towards the point ρ0 = −1, and the other pair
placed at the negative real semiaxis (figure 4(c)). Correspondingly, the Bloch representation
of the Goldstone solution of equation (17) is η = e±iQz+(z) with +(z) = e∓iQzu′(z), i.e. the
Goldstone mode is placed at the border of the doubled Brillouin zone. However, the propagation
of collective modes takes place in the periodic structure determined by the configuration u(z)

(and the period P ). Thus the above doubled Brillouin zone has to be folded once to obtain the
physical one, −Q/2 � k � Q/2. In other words, the wavenumbers k = Q and 0 coincide,
so that the Goldstone mode is realized as the long-wavelength limit for such solutions as well.
Furthermore, we note that after this folding the above Taylor expansion (38) and subsequent
conclusions on the velocity of the Goldstone mode (equations (43)–(45)) follow in the same
way for states with the property u(z + P/2) = −u(z) as well.



4634 V Dananić et al

6. Collective modes for systems of class II

In order to derive collective modes for configurations participating in the phase diagram from
figure 1, we extend the numerical method developed in [19, 20] to the calculation of eigenvalues
and Bloch solutions (33) of the linear problem (10) and (17). In the further discussion we shall
mostly use the notation .(k) ≡ √

�(k), where .(k) has the meaning of the frequency of a
collective mode. Note that the energy scale for .(k) (as well as that for averaged free energies
in figure 1) is defined by the last expression in equation (2).

The periodic solutions from the phase diagram were determined by solving a system of
algebraic equations for coefficients of their Fourier expansions. These Fourier sums were
truncated at finite degrees, high enough to ensure a sufficient precision for u(z), as well as for
the corresponding wavenumber Q, averaged free energy, etc. The limitation of this method
comes from the increase in the number of non-negligible Fourier coefficients as the period
2π/Q increases, and the corresponding solutions u(z) contain more and more elementary
sinusoidal and uniform segments.

Representing the function u2(z) in equation (34) by the corresponding truncated Fourier
series, and writing the function +k(z) in the same manner,

+k(z) = a0 +
√

2
N∑

n=1

[an cos(nQz) + bn sin(nQz)] (46)

we come to the homogeneous linear algebraic system for the coefficients a0, a1, . . . , aN and
b1, b2, . . . , bN . In order to calculate collective modes �(k), it remains to diagonalize the
corresponding (2N + 1)-dimensional matrix. This matrix is generally complex and Hermitian.
Again, one has to keep a sufficient number of Fourier components in the expansion (46) to obtain
a reliable result for at least the two lowest branches in the spectrum �(k). In actual calculations
the truncation at a given number of coefficients N is taken as acceptable if for a given branch
�(k) one fulfils to a certain degree of approximation the equality �(k = 0) = �(k = Q) (i.e.
the equality �(k = 0) = �(k = 2Q) for the solutions with the property u(z+P/2) = −u(z)).

6.1. Collective modes of states us(z), uc(z) and ud(z)

In figure 5 we present the spectrum of collective modes for the incommensurate almost-
sinusoidal state us(z), denoted by s2 in figure 1, choosing a few characteristic values
of the parameter λ. As mentioned previously, here we use the reduced Brillouin zone,
−Q/2 < k < Q/2, for all values of λ, except for those for which the periodic modulation is
absent (λ = 0.3 > λid in figure 5(c)). At the second-order transition from the incommensurate
state to the disordered state ud(z) = 0 (λ = λid = 1

4 ) we present the spectrum in both, reduced
and extended, zone schemes (figure 5(c)). Note that due to the additional symmetry of the s2

state, us(z+π/Q) = −us(z), the subsequent branches in figures 5(a) and (b) are not separated
by gaps at the zone edges k = ±Q/2.

At first, we see that the lowest branch has the property of the Goldstone mode (.(k) ∼ k

for k → 0) over the whole range of stability of the configuration s2. For λ well below
the critical value λid (λ = −0.1 in figure 5(a)) the subsequent pairs of branches defined in
such a way are separated by gaps at k = 0. In other words, the general property obtained
before in the limit � = .2 → ∞ by which only one pair of Floquet multipliers is on the
unit circle (figure 3), is realized here for all values of �. However, as λ increases the gap
between the two lowest pairs of branches decreases, and finally disappears for λ ≈ 0.05,
as is seen in figure 5(a). Then one has an overlap of branches in a finite range of values
of ., i.e. all four Floquet multipliers are on the unit circle. This overlap increases, and
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Figure 5. The dispersion curves for the almost-sinusoidal configuration for different values of the
control parameter λ. (a) The situation when two branches are separated (λ < 0.05). By increasing
λ they begin to overlap for λ ≈ 0.05 (b), until λ reaches the critical value λ = 0.25. (c) λ = 0.249.
The finite slope of curves at k = 0 coincides with that of the Goldstone mode. For λ > 0.25 (d),
these two brances combine into a single mode.

the minimum of the higher branch tends towards 0, as λ approaches the critical value λid

(λ = 0.249 in figure 5(b)). At λ = λid this minimum has the value . = 0, while the
slope d.(k)/dk has a finite value which coincides with that of the already existing Goldstone
branch (figure 5(c)). In other words, just at the second-order phase transitions one has two
acoustic modes, which, although they have the same phase velocities v ≡ limk→0

d.(k)

dk
,

have different dispersions at finite values of k. For λ > λid these two branches combine
into a single mode which has minima at k = ±Q with a finite value .(Q), and a
maximum at k = 0 (figure 5(c)), as follows directly from the quadratic part of the Landau
expansion (3).

The dependence of the phase velocity of the Goldstone mode, vG, on the parameter λ is
shown in figure 6. It is finite at λ = λid , decreases as the amplitude of the incommensurate
state increases and vanishes at the metastability edge for the s2 state, λ = −1.835. This
dependence is in accordance with the analytic results (41)–(45) on the asymptotic behaviour
of the Goldstone mode.

The spectrum of collective modes for the commensurate state uc(z) = ±√−λ (i.e.
ũc(z̃) = ±√−a/b in the original notation of equation (1)) follows from equation (15). This
state is thermodynamically stable in the range a < 0 for c > 0 and a < −c2/(8d) for c < 0,
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Figure 6. The dependence of the phase velocity of the Goldstone mode on λ, corresponding to the
almost-sinusoidal configuration s2.

which comprises positive values of c, excluded from the analysis after the transformation (2).
In order to cover the whole range of stability of ũc(z̃), we rewrite equation (15) in the original
notation,

.̃2 = dk̃4 + ck̃2 − 2a = d

(
k̃2 +

c

2d

)2

− c2

4d
− 2a (47)

(with k̃ ≡ √−c/d k, .̃ ≡
√

c2/d . in the range c < 0). The second equality in the
expression (47) shows that for c < 0 the dispersion curve has minima at k̃ = ±√−c/(2d)

(i.e. at k = ±1/
√

2), with the gap .̃(k̃) equal to
√

−2a − c2/(4d) (i.e.
√

2(−λ − 1
8 ) in the

reduced scale .). As for the range c > 0, it follows from the first equality in equation (15) that
the collective mode has a minimum at k̃ = 0, with the gap .̃(0) = √−2a. The gap vanishes
at a = 0, i.e. at the line of second-order transition from the commensurate state ũc(z̃) to the
disordered state ũd(z̃) = 0.

The commensurate solutions ũc(z̃) = ±√−a/b, which here represent the uniform or
dimerized ordering for the Landau expansions (1) around the centre or the border of the
original Brillouin zone, respectively, have the same symmetry properties as the solution for the
disordered state, ũd(z̃) = 0. The only collective excitations with finite activated frequencies
are fluctuations of the amplitude ũ(z̃) with the above dispersion relation (47). Note that the
mode of Goldstone (acoustic) type is absent. Since the solutions ũc(z̃) possess, as constants,
a trivial translational degeneracy, we prefer to associate this absence of an acoustic branch
with its reduction to the trivial dependence .̃(k̃) = 0. The purpose of this interpretation will
become clear in the next subsection.

Finally, as follows directly from expression (1), the disordered state ũd(z̃) = 0 which
is stable in the range a > 0, c > −√

4ad, has a branch of collective excitations with the
minimum at k̃ = 0 for c > 0, and with two minima at k̃ = ±√−c/2d for c < 0. The
respective gaps at these minima are equal to

√
a (for c > 0), and to

√
a − c2/4d (for c < 0).
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Figure 7. The four lowest branches of collective modes for the simplest of non-sinusoidal states
sd for λ = −1. The branches for all other non-sinusoidal configurations are qualitatively the same
as that for sd.

6.2. Collective modes of periodic metastable states

An illustration of spectra of collective modes for metastable states is shown in figure 7. We take
the state sd, chose the value of the control parameter somewhere in the middle of corresponding
region of stability from figure 1 (λ = −1), and plot the four lowest branches of the collective
modes. Spectra for all other metastable states from figure 1 have the same qualitative properties,
and therefore are not plotted. More specifically, for all states, and for all values of λ within the
respective ranges of stability, the subsequent branches are separated by finite gaps, i.e. there
is no branch overlap, like that obtained for the state s2 (figures 5(a) and (b)).

Furthermore, the lowest branch for all states is the Goldstone mode with the dispersion
.(k) ≈ vGk for k → 0, and with the corresponding phase velocity vG vanishing for the
values of parameter λ at the edges of stability. The dependence of vG on λ for all metastable
states from figure 1 is shown in figure 8. The characteristic scales for these velocities, given
by maxima vG,max of curves vG(λ) for each metastable state, are situated in the range of
values (0.4–0.5 in dimensionless units of figure 8). This is to be compared with the maximum
value of about 1.4 of vG for the configuration us(z) (figure 6). In this respect one may
recognize a rough tendency by which vG,max decreases as the proportion of incommensurate
(s) domains decreases. This decrease is particularly evident as one compares s2 with s9d3,
and with other configurations from figure 1 of [20], in which the proportion of commensurate
domains d is larger and both types of domains become rather short. The decrease of vG,max

is then saturated, i.e. values of vG,max are roughly concentrated in the narrow range 0.47–
0.48.

The above tendency can be plausibly interpreted along the lines of the preceding
subsection. The metastable states are, in fact, domain trains, built as successions of segments
with local sinusoidal (us) and commensurate (uc) orderings. As was already stated, it is
plausible to associate to a commensurate segment a Goldstone mode with vanishing frequency
(and vanishing velocity as well). The total Goldstone mode, which is some hybrid of these
vanishing contributions and the contributions from the local sinusoidal ordering, tends to be
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Figure 8. The dependence of the phase velocity of Goldstone modes on the parameter λ for all
metastable non-sinusoidal configurations.

softer and softer as the train has more and more commensurate domains. As a consequence, the
velocity vG,max gradually decreases as the proportion of commensurate segments in metastable
states increases.

7. Conclusions

The results presented in section 5 show that the spectra of collective excitations for all periodic
states, stable and metastable, from the phase diagram of the model (1) and (3) (figure 1) have
Goldstone branches with a linear dispersion . = vGk in the long-wavelength limit. Thus,
although these spectra belong to the non-integrable model, they have standard characteristics
that essentially follow from the absence of an explicit x dependence of the free energy density in
equation (1). The latter property of the free energy in turn ensures the translational degeneracy
of all solutions of EL equation (4), including those participating in the phase diagram. In this
respect the present spectrum does not differ qualitatively from those of integrable models with
the same property.

The fact that the chaotic content of the phase space for non-integrable models, like that
defined by equation (1) [19, 20] or for other examples [8, 9, 36], does not have as substantial an
impact on the spectrum of collective excitations as it has on the thermodynamic phase diagram,
can be interpreted in the following way. The states from the phase diagram belong to the subset
of solutions of the EL equation defined by conditions like equation (5). They are localized in
the orbitally unstable chaotic layers which cover the phase space, have the measure zero in
this space, and are mutually separated by topological barriers with characteristic heights given
by the averaged free energies of these layers [36, 37]. These barriers do not allow for smooth
changes from one state to another, and as such represent an intrinsic mechanism for frequently
observed phenomena such as memory effects and thermal hysteresis, as discussed in detail in
[20]. In general, non-integrable free energy functionals have more complex phase diagrams
than integrable ones.
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On the other hand, collective modes belong to another space of states, denser than the phase
space, i.e. to that defined by the second-order variational procedure and the corresponding
eigenvalue problem (10). All states in this space are realizable as thermodynamic fluctuations.
They have the usual properties of doubly periodic linear systems, although the corresponding
Bloch functions +k(z) in equation (33) may be far from a simple sinusoidal form. These
properties are not essentially dependent on the level of integrability of the free energy
functional.

In order to resolve the eigenvalue problem (10) for the model (1) and (3), we formulate here
a method based on the general Floquet–Bloch formalism, applicable to any IC system showing
stable multiharmonic (i.e. non-sinusoidal) periodic ordering(s). Beside being a basis for the
numerical calculations of eigenvalues and eigenfunctions (section 5), this approach clearly
indicates that for more complex models and orderings the traditional notions of phasons and
amplitudons are not appropriate. In particular, it was often claimed that, being an expansion
in terms of a real order parameter, the functional (1) itself is insufficient for the stabilization
of modulated states in the systems of class II, since incommensurate states, in particular those
with soliton lattice-like modulations, should have to be described by at least a two-dimensional
order parameter [25, 26, 28, 29]. Also, the absence of a phase variable in equation (1) caused a
belief [27] that the states which emerge from this functional do not have an acoustic (phason-
like) collective mode. However, while the previous study [20] led to the conclusion that
almost-sinusoidal and highly non-sinusoidal configurations are among (meta)stable states of
the model (1) (as is seen in figure 1), the present analysis shows that Goldstone modes are
well defined for all of these configurations. On the other hand, all dispersive modes for the
homogeneous (u = constant) states are massive, i.e. have finite gaps.

The gap of the lowest such mode tends to zero at continuous (second-order) phase
transitions from one homogeneous state to another, or to some periodic ordering. The examples
are the lines (c > 0, a = 0) and (c < 0, λ ≡ ad/c2 = 1

4 ), representing the transitions from the
disordered state to the commensurate and incommensurate states, respectively. As is shown in
figure 5, the situation is qualitatively different at the transition from the disordered state to the
incommensurate, almost sinusoidal, one. The reason is the specific behaviour of the Goldstone
mode in the incommensurate state. By approaching the transition from the incommensurate
side the phase velocity of this mode, vG, remains finite, while, as is shown elsewhere [38],
its oscillatory strength tends to zero. In fact, the above behaviour of the Goldstone mode
for the state s2 at the second-order transition to the disordered state is exceptional. Namely,
the Goldstone modes in the (meta)stable states behave critically at the edges of stabilities for
these states, including the lower edge of state s2 at λ = −1.835. At these edges the phase
velocities vG vanish. All of these specific properties of collective modes, particularly of the
most interesting Goldstone modes, are expected to be directly experimentally observable in
x-ray and neutron scattering, as well as in optical and similar measurements. The particular
discussion of the role of these collective modes in the dielectric response, and the comparison
with measurements on some materials of class II, is given in [38].

Finally, we comment on the general property of Goldstone modes for metastable periodic
states for which they become softer and softer as the period of these states increases. This
tendency, shown in figure 8, has its origin in the elastic nature of the Goldstone modes in the
long-wavelength limit. More specifically, as the segments of local sinusoidal order become
more and more dilute in the underlying commensurate background, the slight variations
in their mutual distances cost less and less energy, i.e. the corresponding effective elastic
constant decreases. In this interpretation, which holds for dilute soliton lattices as well, the
commensurate ordering is by assumption perfectly elastic, i.e. the notion of relative distance
has no sense since the lattice discreteness is neglected. The only possible deformations are
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those invoking the variations of amplitude, and resulting in the massive collective modes. The
lattice discreteness introduces, through an ‘external’ potential of Peierls–Nabarro type, the
finite stiffness of the local commensurate ordering, or even opens the gap in the Goldstone mode
for dilute incommensurate states at the transition by the breaking of analyticity [15, 17, 18].
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Appendix

The procedure from section 3 takes into account, after relaxing boundary conditions (6),
all infinitesimal variations of the order parameter u(z). This generalization includes some
thermodynamic variations, such as those, specified by the scaling u(z) → su(z) with s → 1,
responsible for the condition obeyed by u(z) at boundaries z = 0 and L (condition B in [31]).
However, by this procedure the analysis of thermodynamic stability is still not completed,
since there remain variations which invoke infinitesimal relative changes in the configuration
u(z), but are not infinitesimal at the absolute scale. An example is the scaling

u(z) −→ u[(1 + ε)z] ε → 0 (A1)

which leads to the condition (5). The variation that corresponds to this scaling is not
infinitesimal. Indeed, after the transformation (1 + ε)z → z in the integral (3), it follows
that this variation behaves as z and therefore does not fulfil the criterion of infinitesimality
specified in section 3. Thus the above procedure has to be enlarged by including the expansion
of the free energy with respect to ε up to the quadratic terms. While the requirement that the
linear term vanishes gives the condition (5), the second-order variation reads

δ2f ≡ f [u((1 + ε)z) + η] − f [u(z)]

= 1

L

∫ L

0
dz

[
η(z)Dη(z) + 2(u′(z))2ε2 + 4(2u′′′′(z) + u′′(z))η(z)ε

]
(A2)

i.e. expression (8) is extended by the term quadratic in ε, and the term representing the bilinear
coupling between η(z) and ε.

The previous analysis [19, 20] of the model (1) and (3) led to the conclusion that all
solutions u(z) of the EL equation (4) that participate in the thermodynamic phase diagram as
stable or metastable configurations are simple periodic. The analysis in section 4 shows that
the corresponding eigenfunctions η�(z) of the problem (10) are then doubly periodic. This
means that for periodic extrema u(z) the bilinear coupling in the expression (A2) vanishes, i.e.
the fluctuations in ε are decoupled from η(z) fluctuations. The remaining ε2 term is positively
definite, i.e. all periodic configurations satisfying the EL equation (4) and the condition (5) are
also stable with respect to the variation defined by the scaling (A1), irrespective of the value
of the control parameter λ in the functional (3).
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[2] Grüner G 1988 Rev. Mod. Phys. 60 1129
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[15] Aubry S 1978 Soliton and Condensed Matter (Solid State Science vol 8) ed A R Bishop and T Schneider (Berlin:

Springer) p 254
[16] Aubry S and Quemerais P 1989 Low-Dimensional Electronic Properties of Molybden Bronzes and Oxides ed

C Schlenker (Dordrecht: Kluwer) p 209
[17] Baesens C and Mackay R S 1996 J. Stat. Phys. 85 471
[18] Lorenzo J P and Aubry S 1998 Physica D 113 276
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[35] Poincaré H 1890 Acta Math. 13 5
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